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We report the normal stresses in a non-Brownian suspension in plane Couette flow
determined from Stokesian Dynamics simulations. The presence of normal stresses
that are linear in the shear rate in a viscometric flow indicates a non-Newtonian
character of the suspension, which is otherwise Newtonian. While in itself of inter-
est, this phenomenon is also important because it is believed that normal stresses
determine the migration of particles in flows with inhomogeneous shear fields. We
simulate plane Couette flow by placing a layer of clear fluid adjacent to one wall
in the master cell, which is then replicated periodically. From a combination of
the traceless hydrodynamic stresslet on the suspended particles, the stresslet due to
(non-hydrodynamic) inter-particle forces, and the total normal force on the walls, we
determine the hydrodynamic and inter-particle force contributions to the isotropic
‘particle pressure’ and the first normal stress difference. We determine the stresses
for a range of the particle concentration and the Couette gap. The particle pressure
and the first normal stress difference exhibit a monotonic increase with the mean
particle volume fraction φ̄. The ratio of normal to shear stresses on the walls also
increases with φ̄, substantiating the result of Nott & Brady (1994) that this condition
is required for stability to concentration fluctuations. We also study the microstructure
by extracting the pair distribution function from our simulations; our results are in
agreement with previous studies showing anisotropy in the pair distribution, which is
the cause of normal stresses.

1. Introduction
It is often assumed in studies devoted to the creeping flow of suspensions of

non-Brownian particles in Newtonian liquids that the rheological behaviour of the
mixture is Newtonian, with an enhanced shear viscosity; considerable effort has been
focused on the determination of the effective viscosity of suspensions as a function of
the particle concentration and size distribution. However, some recent studies have
reported the presence of normal stresses in viscometric flows that vary linearly with
the shear rate (Prasad & Kytomaa 1995; Brady & Morris 1997). The existence of
rate-dependent normal stresses is a non-Newtonian characteristic because the pressure
in a Newtonian fluid in a viscometric flow is determined solely from the boundary
conditions and the hydrostatic balance of forces; there is no rate dependence of
the pressure. The presence of suspended particles causes an additional pressure that
is linear in the shear rate. There is also evidence of normal stress differences in
suspensions, which is clearly a non-Newtonian effect.
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The normal stresses in a non-colloidal suspension are worthy of investigation
from a fundamental standpoint as they are the only non-Newtonian characteristics
it exhibits – shear thinning or thickening or any viscoelastic effects are generally
not observed unless there are significant non-hydrodynamic interactions between
the suspended particles. From a practical viewpoint, normal stress differences are
an important consideration in the processing of concentrated suspensions. Such a
study is of even greater significance because normal stresses determine segregation
of particles in suspensions subjected to an inhomogeneous shear field (Jenkins &
McTigue 1990; Nott & Brady 1994). While the normal stresses show no apparent
effect in a homogeneous suspension undergoing uniform deformation, Nott & Brady
(1994) argued that their role in inhomogeneous shear is important; in the case
of pressure-driven flow through a channel, for instance, they determine segregation
through the requirement that normal stress in the gradient direction remain constant.
Nott & Brady also showed that their ‘suspension balance’ model reduces to the
‘diffusive flux’ model of Leighton & Acrivos (1987) as a special case, showing that
the two descriptions, though motivated by different considerations, were physically
equivalent.

In the early investigations which attempted to calculate the bulk stress in a sus-
pension (Batchelor 1970; Brady & Bossis 1985), the particle pressure (the isotropic
component of the particle-induced stress) was discounted as being of no consequence.
Phung, Brady & Bossis (1996) determined the normal stress differences in Brownian
suspensions for a range of the Péclet number Pe, from simulations of unbounded
plane shear; their data showed the first and second normal stress differences to be
negative and comparable in magnitude at large Pe. Recently, Brady & Morris (1997)
presented an analysis for dilute suspensions showing that an interplay between hy-
drodynamics, weak Brownian motion and a repulsive inter-particle force results in an
anisotropic pair-distribution function; there is a buildup of particles of O(Pe) in the
compression quadrant, in a boundary layer of thickness O(Pe−1). Since their solution
for the pair distribution was valid only in the compression quadrant, they were unable
to compute the complete hydrodynamic stress (except in the case of a very long-range
repulsive force), but estimated part of the hydrodynamic contribution to the second
normal stress difference in planar extensional flow.

The earliest reported measurement of the normal stress in suspensions was by
Bagnold (1954). Though he attempted to investigate rheology in the ‘macro-viscous’
regime, the Reynolds number for his system was not sufficiently small, and most of his
data were for the ‘grain-inertia’ regime, where stress is generated primarily by particle
collisions. Gadala-Maria (1979) appears to have made more careful measurements
of the normal stress in the creeping flow regime, but only for very concentrated
suspensions. The most recent and systematic experiments were by Prasad & Kytomaa
(1995) on concentrated suspensions (0.493 < φ < 0.561), conducted with the stated
aim of studying the “behaviour of the normal stress in the viscous regime, if it exists”.
However there appear to be several aspects in their study that strongly suggest the
presence of artifacts: first, it does not appear that the density of the particles and
suspending fluid were closely matched, leaving open the possibility of inhomogeneities
arising from sedimentation. Secondly, their figures 8 and 9 show that the normal and
shear stresses are roughly linear in the shear rate only for the smallest particle
concentration (φ = 0.493) and sub-linear at higher concentrations. This suggests
stress generation by particle contacts, perhaps as a result of gravitational compaction.
Lastly, they use a perforated top plate “that allows pore pressure to equilibrate” with
unsheared pure fluid, so that the measured stress “results solely from the coupling
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of the particulate medium and the wall”. This is an unconvincing argument because
the stress in the viscous regime is transmitted solely by the fluid, and not by particle
contacts – it thus appears that the stress that Prasad & Kytomaa measured was not
the viscous stress but that arising from particle contacts.

Recently, Haan & Steif (1993) have determined the ‘particle-phase pressure’ from
numerical simulations of a planar suspension of rough contacting cylinders subjected
to shear. They incorporate the roughness as a minimum distance of separation, δ,
between approaching cylinders. However, they define the dispersive pressure as the
difference between the pressures in the particle and fluid phases, which is different
from the usual definition of the particle-induced stress. A more detailed discussion of
their study is given in the concluding section of this paper.

The model of Jenkins & McTigue (1990) and Nott & Brady (1994) provides a
clear link between rheology and particle migration; it predicts migration of particles
from regions of high to low shear rates in rectilinear flows if the normal stress in the
gradient direction is an increasing function of particle concentration. The recent work
of Morris & Boulay (1999) follows the speculation of Nott & Brady that normal
stress differences modulate migration in curvilinear flows; they have shown that their
model predictions are in qualitative agreement with data reported in the literature
for shear in parallel-plate and cone–plate devices, if the ratio of the normal stresses
is within a specified range.

In this paper, we report normal stresses determined from Stokesian Dynamics sim-
ulations. In the past, the stress from simulations has been determined by considering
unbounded shear generated by the use of Lees–Edwards periodic boundary condi-
tions, as in the work of Brady & Bossis (1985) and Phung et al. (1996). We do not
follow this approach; rather we determine the stress for shear between plane parallel
walls, i.e. plane Couette flow, just as one would in an experiment. We briefly describe
the simulation method in § 2, in particular the extension of the original Stokesian
Dynamics technique (Brady & Bossis 1988; Brady et al. 1988) to incorporate plane
boundaries. In § 3 we report the shear and normal stresses determined from our sim-
ulations for a range of volume fraction of particles, and the pair-distribution function
for some representative cases. A brief discussion and concluding remarks follow in
§ 4.

2. Simulation method
We focus on the dynamics of a non-Brownian suspension of spheres in a Newtonian

liquid in the creeping flow regime, i.e. Rep ≡ ργ̇a2/η → 0 and Pe ≡ γ̇a2/2D → ∞.
The former is the Reynolds number based on particle size and the latter is the Péclet
number; here ρ and η are the density and viscosity of the fluid, a is the radius of the
spheres, γ̇ is a nominal shear rate and D is the Brownian diffusivity of an isolated
particle. Additionally we restrict our attention to neutrally buoyant suspensions (the
densities of the spheres and suspending fluid are equal), though this constraint is not
essential for the simulations and can easily be relaxed.

The Stokesian Dynamics method (Brady & Bossis 1988; Brady et al. 1988; Durlof-
sky & Brady 1989) has been used extensively for simulating the dynamics of a
suspension of rigid spheres in a Newtonian fluid. In one of the early implementations
of this technique, Durlofsky & Brady (1989) studied the shear of a suspension bounded
between two plane parallel plates. They computed interactions between particles and
the walls by discretizing the latter into patches and assuming a uniform distribution
of the force density in each patch. They accounted for interactions between a particle
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in the master cell and another outside it by a mean-field approximation. This was
later rectified by Brady et al. (1988) by the use of Ewald’s resummation technique for
a periodic lattice in order to simulate unbounded flow, which Nott & Brady (1994)
subsequently used to study the pressure-driven flow of a suspension. Nott & Brady
considered the walls to be made up of spheres stuck together by the requirement that
they moved with the same velocity. Though the use of this ‘bumpy’ wall did not alter
the large-scale dynamics of the suspension, it understandably resulted in particles
near the walls recording a bumpy motion, which they subtracted off while computing
the mean velocity fluctuation.

To avoid this and other complications arising from a bumpy wall and at the same
time to simulate plane Couette flow that is unbounded in the flow and vorticity
directions, we undertook to extend the Stokesian Dynamics method to allow plane
boundaries. This was accomplished in a rather simple manner, the details of which
are presented below.

The hydrodynamic forces and stresslets on the particles are related to their velocities
and the imposed deformation rate by the relation[

F
S

]
= R·

[
U − 〈u〉
−〈e〉

]
. (2.1)

The essence of the Stokesian Dynamics method is in decomposing the grand resistance
tensor into far-field and near-field components:

R =M−1 +R2b −R∞2b, (2.2)

whereM is the far-field mobility tensor determined from a multipole expansion of the
force density distribution on the particles, R2b is the near-field two-body resistance
tensor for all particle pairs and R∞2b is the far-field part of R2b, which is subtracted
to avoid double-counting. The near-field resistance contribution is added only when
particle pairs are within a critical distance of each other, which was taken as a centre-
to-centre distance of four radii in the studies cited above. While M is computed at
the two-body level, its inverse captures all the many-body interactions, as shown by
Durlofsky, Brady & Bossis (1987).

Our only modification of the above scheme is to use the exact sphere–wall re-
sistances for interactions of the suspended particles with either of the bounding
walls. For separations (distance of particle centre from the wall) between 1.01 and
3 radii, these were tabulated at discrete intervals of the separation and utilized in
the code by interpolation. For separations less than 1.01 radii, the analytical form
of the lubrication resistances was used (Brenner 1961; Maude 1961; Goldman, Cox
& Brenner 1967). The far-field sphere–wall mobility is still computed as before, as a
multipole expansion of the force density; in other words, the walls are discretized as a
string of spheres (of the same size as the suspended spheres) to compute the far-field
interactions. While this differs from the approach of Durlofsky & Brady (1989) of
discretizing the walls into patches (with the force density assumed constant on each
patch), its efficacy in computing the grand mobility is not inferior – the details of the
force distribution on each discretized part of the wall will not significantly influence
the motion of a particle far away from a wall. On the other hand, this ansatz enables
us to use the efficient method of Brady et al. (1988) for computingM as a lattice sum
using Ewald’s resummation technique, in the simulation of uniformly sized spheres
employing periodic boundary conditions.

Thus, the sphere–wall resistance Rsw
FU for each wall is computed by summing the

mobility inverse over all the discretizations (which are thought of as spheres for the
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purpose of calculating M) in that wall, then adding the exact near-field sphere–wall
resistance and lastly subtracting the far-field part of the resistance. In other words,

Rsw
FU =

∑
k

(M−1)skFU + RswFU − Rsw∞FU , (2.3)

where the summation above is over all the mobility discretizations in the wall.
The far-field part of the sphere–wall resistance, Rsw∞FU , is determined by form-

ing a mobility matrix for a sphere and all the wall ‘particles’, and then inverting.
Computation of the near-field resistance tensor RswFU is described below.

2.1. Near-field sphere–wall hydrodynamic interactions

For the general motion of a single sphere near a plane wall whose normal is in
the y-direction, the force and torque (in the absence of shear) are related to the
translational and rotational velocities as Fx

Fy

Tz

 =

 RFxUx
0 RFxΩz

0 RFyUy
0

RTzUx
0 RTzΩz


 Ux

Uy

ωz

 . (2.4)

When the separation ∆Y between a sphere and a plane wall is less than 1.001,
asymptotic expressions given by Goldman et al. (1967) for RFxUx

, RFxΩz and RTzΩz ,
and by Cox & Brenner (1967) for RFyUy

are used; for 1.001 < ∆y < 3, the bispherical
harmonics solution of O’Neill (1964) for RFxUx

and RFxΩz , and the corrected solution
of Dean & O’Neill (1963) for RTzUx

and RTzΩz , are used to compute the respective
resistances and tabulate their values. Lastly, the series expansion of Brenner (1961)
and Maude (1961) is used for generating the tabular data for RFyUy

.

2.2. Simulation of plane Couette flow

In order to simulate bounded plane shear, the suspension is restrained between two
plane parallel walls translating relative to each other at a constant speed U0. This cell
cannot, however, be replicated periodically in the y-(gradient) direction, and therefore
we have introduced a layer of pure fluid below the lower wall, as shown in figure 1.
When this cell, comprising the layer of suspension restrained between the two walls
and the layer of pure fluid, is replicated periodically in all directions, a negative shear
rate is imposed on the suspension and a positive shear rate on the layer of pure fluid.
The distance between the two walls containing the suspension is henceforth referred
to as the Couette gap. In all our simulations, the Couette gap H is equal to the
thickness of the layer of pure fluid, and the length L of the master cell is equal to H .
The master cell is replicated periodically in all directions to generate fully developed
flow between plane parallel walls.

The velocities of the walls are fixed and the forces on them are to be determined,
while the forces on the particles are fixed and their velocities are to be determined.
The velocities of the suspended particles are to be determined from

Rss
FU ·(U s − 〈u〉) +Rsw

FU ·(Uw − 〈u〉) = F s (2.5)

where the superscripts s and w on the velocities and forces indicate sphere and wall
quantities, and the superscripts ss and sw on the resistances indicate sphere–sphere
and sphere–wall couplings, respectively. Similarly the forces on the walls are given by

Rws
FU ·(U s − 〈u〉) +Rww

FU ·(Uw − 〈u〉) = F w. (2.6)
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Figure 1. The master cell for our simulations of shear of a monolayer of spheres between plane
parallel walls. For the purpose of computing the far-field sphere–wall interactions, it is assumed
that each wall is composed of a plane of spheres. Note the layer of pure fluid, which allows periodic
replication of this cell in the y-direction. The thickness of the layer of suspension H is henceforth
referred to as the Couette gap.

In order to ensure that the flow in the Couette gap is uniform shear and there is no
pressure-driven flow, the mean velocity over the entire domain, 〈u〉, is set to zero. In
some of our simulations we employed the alternative constraint∑

walls

Fx = 0, (2.7)

where the summation is over both walls, which again is an attempt to impose the
condition that the flow is pure shear. While neither of the conditions above result
in the mean velocity within the gap being exactly zero, we have verified in all our
simulations that it is indeed very small (see § 3). Both conditions yielded almost
identical bulk properties, so we shall only report results of simulations for which the
former condition was used.

Equations (2.5) and (2.6) give the hydrodynamic forces on the spheres and walls.
The dynamics of the spheres and walls is determined, once the external force is
specified, by

F hyd + F ext = 0. (2.8)

While we have imposed no external body force in our simulations, we have imposed an
inter-particle repulsive interaction between the spheres. Besides providing a qualitative
model of non-hydrodynamic effects when the inter-particle separation is small, the
repulsive interaction also prevents frequent particles overlaps. Recently Dratler &
Schowalter (1996) have shown that Stokesian Dynamics simulations employing a
short-range repulsive force result in more realistic microstructure. The form of the
repulsive force we have used is the same as in the simulations of Nott & Brady (1994),

F αβ = F0

τe−τε

1− e−τε
eαβ, (2.9)

where F αβ is the force exerted by sphere β on sphere α. The parameters τ and F0

specify the range of the force and its magnitude, respectively; ε is the separation
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between the surfaces of the spheres and eαβ is the unit vector connecting the sphere
centres. We have not imposed any non-hydrodynamic forces between the suspended
particles and the walls.

The hydrodynamic stresslets on the particles are readily computed, once their
velocities are known, from the relation

Rss
SU ·(U s − 〈u〉) +Rsw

SU ·(Uw − 〈u〉) = S . (2.10)

Substituting for U s from (2.5), we get

S = Rss
SU ·(Rss

FU )−1·F s −Rss
SU ·(Rss

FU )−1·Rsw
FU ·(Uw − 〈u〉) +Rsw

SU ·(Uw − 〈u〉).
(2.11)

We identify the first term on the right-hand side of the above relation as a contribution
to the stresslet from the repulsive inter-particle forces and the remainder as a purely
hydrodynamic stresslet. While this division is not strictly correct, as the inter-particle
forces also determine the microstructure and hence the resistance functions RSU and
RFU , it serves as a convenient and useful measure of the respective contributions.
However, we must emphasize that all contributions in (2.11) arise from hydrodynamic
interactions, i.e. due to the relative motion of particles in the suspending fluid. There is
a contribution to the stress from inter-particle forces which exists even in the absence
of any intervening fluid, which (2.11) does not include; this contribution is accounted
for while computing the net stress due to the inter-particle force in (3.4).

An important point to note here is that the far-field mobilityM is constructed with
the assumption that the hydrodynamic stresslet does not have an isotropic part, and
hence the isotropic part of S determined from (2.11) is not complete. As detailed in
§ 3.1, we determine the full isotropic pressure by measuring the normal force on the
walls.

Equation (2.5) is solved for the sphere velocities by Cholesky factorization, as RssFU
is symmetric and positive definite (Durlofsky et al. 1987). The hydrodynamic force
exerted by the fluid on the wall is then given by (2.6), which must be balanced by an
external force to keep it translating at constant velocity. From the forces on the walls,
the shear and normal stresses in the suspension are readily determined. Our results
in the following section are presented in dimensionless units: all lengths are scaled by
the particle radius a, velocities by the wall speed U0, time by a/U0, and stresses by
the product of the fluid viscosity η times the nominal shear rate 2U0/H .

All computations were performed on DEC Turbolaser 8400 workstations (140.4
MFLOPS). A simulation with 46 particles for a dimensionless time span of 5000
required 8 hours of CPU time.

3. Results
To verify our simulation technique, particularly the method of incorporating plane

boundaries, we compare the translation velocity of a single sphere in plane Couette
flow with the exact solution of Ganatos, Weinbaum & Pfeffer (1982). For the purpose
of this comparison, we conducted a full three-dimensional simulation (i.e. the sus-
pended sphere was allowed all six translational and rotational degrees of freedom),
with the walls in the master cell measuring 14 sphere radii in the x- and z-directions,
and separated by a distance of 10 sphere radii in the y-direction. Thus, each wall
consists of 49 spheres for the mobility discretization. The top wall moves with a
constant speed U0 in the negative x-direction and the bottom wall with same speed
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Figure 2. The translational velocity, as a function of position, of a single force- and torque-free
sphere suspended in a fluid which is sheared between two planes spaced 10 sphere radii apart. The
symbols are the results of our simulation, the solid line is the result of Ganatos et al. (1982), and
the dashed line is the linear velocity profile for pure fluid.

in the opposite direction. The velocity of a single suspended sphere, which is force-
and torque-free, is then determined as a function of its distance from the walls.

Figure 2 shows the translational velocity of the sphere (normalized by U0) at dif-
ferent positions. Our result shows good agreement with the solution of Ganatos et al.
(1982) near the walls, but deviates from it away from the walls. The discrepancy is,
however, never greater than 6%. The deviation arises mainly from the approximation
in Stokesian Dynamics of the hydrodynamic interactions as a matched sum of the
near- and far-field contributions. There may also be a contribution to the error from
the small pressure-driven component of the flow (see below). In any case, we expect
the present scheme to suffice in capturing all the macroscopic properties of interest,
as in the earlier studies that have employed this simulation technique.

All the results reported henceforth are for sheared suspensions of spheres confined
to a monolayer. The centres of all suspended spheres in the master cell lie in the (x, y)-
plane, and are restricted from translating in the z-direction. Additionally, rotational
movement of the spheres is allowed in the z-direction only. The z-dimension of
the master cell is 2 (i.e. 1 particle diameter), and it is replicated periodically in all
directions. Simulations of a monolayer require far less computation, as not only are
the spheres fewer in number, but the degrees of freedom for each sphere are also
reduced to 6 (from 11 for a full three-dimensional simulation). However, the essential
physics of the problem is retained in a monolayer simulation, as is evident from
earlier studies (Brady & Bossis 1985; Nott & Brady 1994; Phung et al. 1996).

The parameters that determine the properties of the system are the mean area
fraction of particles φ̄, the dimensionless Couette gap H , the strength of the repulsive
force F0, and its range τ. The initial configuration of the suspended spheres was
generated by first arranging the particles in a regular array and then applying small
random displacements until a uniform distribution was achieved. The steady-state
response of all bulk properties was found to be largely insensitive to the initial
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Figure 3. Trace of the mean distance of particles from the mid-plane (y = 15) versus time with the
mean area fraction of spheres φ̄ set to 0.4 and the Couette gap H set to 30. The parameters for the
repulsive inter-particle interaction (see equation (2.9)) are F0 = 10−4 and τ = 100.

configuration as the microstructure quickly relaxed to its dynamical equilibrium. In
all the simulations the structure was allowed to evolve from start till t = 3000, and
the properties such as the concentration, velocity and stress fields were then averaged
over the subsequent 2000 dimensionless time units. We ensured that the properties
being measured were indeed those of a dynamical steady state by verifying that their
average over a short time interval did not vary appreciably with time. It must be
noted, however, that there are large intermittent fluctuations in the stress, especially
at the higher particle concentrations that we have studied, corresponding to instances
of the formation of a large (sometimes gap-spanning) network of particles. We have
performed simulations for H = 14, 18 and 30, and for several values of φ̄ in the range
0.05 to 0.65.

Figure 3 shows the time trace of the mean distance of the particles from the mid-
plane (scaled by the particle radius) for a mean area fraction of 0.40 and a Couette
gap of 30. This simulation was carried out for a dimensionless time span of 5000,
with a time increment of 0.01. As expected, there is no large-scale migration of the
particles. The small increase in y towards the end of the simulation is due to a single
sphere getting ‘attached’ to the top wall; we have verified that these instances have
no effect on the bulk properties such as the stress. The particle concentration field,
shown in figure 4, is uniform but for the expected depletion near the walls. Profiles of
the particle concentration, velocity and other fields are obtained in the usual manner
by dividing the simulation cell into a number of rectangular bins, determining the
area-weighted mean in every bin at each instant, and then time averaging. The velocity
profile for this simulation (also shown in figure 4) is linear across the gap. The mean
velocity over all particles in the gap is never greater than 0.01, substantiating our
assertion in § 2.2 that the pressure-driven component of the flow is very small. Another
quantity of interest in the dynamics of suspensions is the mean-square fluctuation
velocity of the suspended particles. Other than its obvious connection to the particle
diffusivity, this field was also linked to the particle pressure in the suspension and
migration of particles in inhomogeneous flows by Nott & Brady (1994). It is surprising
that the mean-square fluctuation velocity (figure 5) shows a marked variation across
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Figure 4. The steady-state concentration and velocity profiles for φ̄ = 0.4 and H = 30. The dashed
line is the linear velocity profile for a pure fluid. The parameters for the repulsive inter-particle force
are as in figure 3.

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0 2.5

1.0

3.0

〈U ′U ′〉

〈U ′
x U

′
x〉

〈U ′
y U

′
y〉

y
H

Figure 5. The time-averaged steady-state mean-square fluctuation velocity profile for φ̄ = 0.4 and
H = 30. Here U ′ has been scaled with U0(a/H), i.e. the product of the nominal shear rate and
particle radius. The parameters for the repulsive inter-particle force are as in figure 3.

the gap though the shear rate is uniform, indicating its sensitivity to proximity to the
impermeable walls.

The trends shown in figures 3–5 are indeed common to all our simulations. The
mean velocity profile is always close to linear, the particle concentration is uniform
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across the Couette gap, and the fluctuation velocity rises with increasing proximity to
the walls.

3.1. Shear and normal stresses

The shear stress σyx can be determined either by computing the net force on the
walls in the x-direction, or from the mean stresslets on the suspended particles. While
the normal stress differences can be determined from the stresslet Sxx and Syy , the
isotropic part of the stress, the particle pressure, cannot be determined correctly from
the stresslet. As stated in § 2.2, this is because the mobility matrixM, which accounts
for the far-field part of the hydrodynamic interactions, was constructed assuming
that

∑
i Sii = 0 (the near-field interactions are accounted for by the exact two-body

resistance, R2b, and therefore do capture the isotropic part of the stresslet). Jeffrey,
Morris & Brady (1993), have computed the resistance functions that determine the
full isotropic part of the stresslet, and these may be used to compute the particle
pressure. However, we choose the more direct method of determining the pressure
from the normal force on the walls, as shown below.

The net normal stress σyy may be written as

σyy = −ΠH
ff +

N

V

{〈SHyy〉+ 〈SPyy〉
}
, (3.1)

where ΠH
ff is the far-field part of the stresslet, which was ignored while computingM

(see above). The mean hydrodynamic particle stresslet 〈SH〉 is given by

(1− φ)〈SH〉 =
1

N

N∑
α=1

SHα (3.2)

with

SH = −Rss
SU ·(Rss

FU )−1·Rsw
FU ·(Uw − 〈u〉) +Rsw

SU ·(Uw − 〈u〉). (3.3)

The contribution to the stress by the interparticle force is

〈SP 〉 =
1

N

N∑
α=2

∑
β<α

rαβF αβ +Rss
SU ·(Rss

FU )−1·F P , (3.4)

the first term being the purely configurational non-hydrodynamic contribution alluded
to in § 2.2, and the second term the hydrodynamic contribution. The summation above
is over all particles within the averaging volume. We have defined the stress in the
tensile sense, and therefore a positive σyy (or σxx) implies tension. The net stress σyy
is simply the normal force Fy on the walls, given by (2.6), divided by area of the wall
in the master cell 2L (refer to figure 1). Since Fy and SHyy are computed independently

in our simulations, and SPyy is readily determined for each particle configuration, the

isotropic far-field stress ΠH
ff can be determined from (3.1). The total particle pressure

is then

Π = ΠH
ff − 1

3

N

V
Tr
(〈SH〉+ 〈SP 〉) , (3.5)

and the normal stress in the x-direction is

σxx = −ΠH
ff +

N

V

{〈SHxx〉+ 〈SPxx〉
}
. (3.6)

A detail to bear in mind is that the force on the walls, F w , given by (2.6), includes
the contribution due to shear of the layer of pure liquid, which has to be subtracted to
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Figure 6. Comparison of the shear stress measured on the wall with that derived from the
stresslet on the suspended particles. The Couette gap H is 30, and the parameters for the repulsive
inter-particle force are as in figure 3.

determine the shear stress within the suspension. This is done by simply subtracting
η2U0/H from the stress determined from (2.6). All the results reported in this section
are obtained with the strength and range of the repulsive force fixed, F0 = 10−4,
τ = 100. We consider the effect of varying these parameters on the rheology in § 3.2.

Figure 6 displays the dimensionless shear stress (or the relative viscosity of the
suspension) as a function of the mean area fraction of particles for a Couette gap of
30, determined from the force on the walls (solid line) and from the mean stresslet
〈Sxy〉 on the suspended particles (dot-dashed line). It is apparent that the agreement
between the two measurements is very good. Figure 7 shows that increasing the
Couette gap H has very little effect on the shear stress, implying that the flow is that
of uniform shear even for the smallest Couette gap we have considered. The shear
stress increases rapidly as the concentration approaches that of maximum random
packing (which is φ̄ ≈ 0.83 for a monolayer of spheres), as expected.

We now turn to the normal stresses determined from our simulations; figure 8
shows the dimensionless σyy as a function of the particle concentration, determined
from the normal force on the walls (as mentioned earlier, −σyy is the compressive

normal stress). It is zero and has zero slope at φ̄ = 0, in agreement with the predicted
φ2 variation (Brady & Morris 1997) for dilute suspensions. It is also apparent that
σyy rises rapidly with φ̄, with the suggestion of a divergence as maximum random
packing is approached. This suggests that the normal stress in the gradient direction
can be measured experimentally at moderate to high concentrations. The scatter in
the data and the variation with H are higher than for the shear stress, primarily a
result of the sensitivity of the normal stress to the microstructure. The scatter can be
minimized by averaging over many configurations, but the low mobility of particles
at high concentrations reduces the scope for averaging over many configurations
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Figure 7. The shear stress σyx at the wall as a function of the mean area fraction for Couette gaps
of 14, 18 and 30. The parameters for the repulsive inter-particle force are as in figure 3.
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Figure 8. The normal stress σyy , measured on the wall, as a function of the mean area fraction of
suspended particles. The parameters for the repulsive inter-particle force are as in figure 3.
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Figure 9. The isotropic part of the particle stress, Π(φ). The parameters for the repulsive
inter-particle force are as in figure 3.
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parameters for the repulsive inter-particle force are as in figure 3.
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Figure 11. The hydrodynamic and repulsive-force contributions to the particle pressure. The
Couette gap is 30, and the inter-particle repulsive force parameters are as in figure 3.

in a single simulation. We were constrained from obtaining an ensemble average
over many initial configurations by the large computation time required for each
simulation. The variation with H is probably a result of the structure being distorted
by the walls over a significant fraction of the shearing layer when the gap is small.

The isotropic part of the particle stress is shown in figure 9 as a function of the
concentration; the trends are similar to those in figure 8. Though very small at low
concentrations, the magnitude of the pressure approaches that of the shear stress with
increasing concentration. Figure 10 clearly shows the ratio σyy/σyx increasing with the
particle concentration. This is an interesting and useful result, because Nott & Brady
(1994) have demonstrated that this ratio must be a monotonic increasing function
of the particle concentration for the stability of homogeneous shear to perturbations
in the particle concentration. The contributions of the hydrodynamic and inter-
particle stresses to the particle pressure are given in figure 11. The contribution
from the repulsive force is much smaller than the hydrodynamic contribution, but
it is nevertheless significant. As discussed earlier in § 2.2, the division of the total
pressure into the two components is only nominal, as it does not reflect the respective
contributions to the microstructure; this is further explored in § 3.2.

Finally, the first normal stress difference, N1 ≡ σxx − σyy , is shown in figure 12 as
a function of the particle concentration. It is always negative, in agreement with the
simulation data of Phung et al. (1996), and its magnitude rises rapidly with φ̄. At
small concentrations, the contribution to N1 from the repulsive force is very small;
its magnitude is significant at large concentrations, but it is of opposite sign to the
hydrodynamic contribution. Since our simulations are for monolayers, we are unable
to determine the second normal stress difference N2 ≡ σyy − σzz .
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Figure 12. The net first normal stress difference, N1, and its hydrodynamic and repulsive-force
components for H = 30 as a function of the mean particle area fraction. The inter-particle repulsive
force parameters are as in figure 3. The repulsive-force component is always much smaller than the
hydrodynamic contribution, and is of opposite sign at large concentrations.

Foτ τ −σyx −σHyx −σPyx −σyy −σHyy −σPyy
0.01 10 2.1175 2.1634 −0.1274 0.2514 0.0912 0.1602
0.01 100 2.2706 2.3308 −0.1051 0.3044 0.2379 0.0665
0.01 1000 2.3269 2.4054 −0.0759 0.2293 0.1957 0.0336
0.01 10000 2.3922 2.4567 −0.0503 0.2182 0.2082 0.0100

0.01 100 2.2706 2.3308 −0.1051 0.3044 0.2379 0.0665
0.10 100 2.1517 2.1793 −0.1252 0.2873 0.1747 0.1126
1.00 100 2.0818 2.0600 −0.1063 0.2858 0.1049 0.1809

10.0 100 2.0174 1.9469 −0.0691 0.2595 0.0380 0.2215

Table 1. Effect of the inter-particle repulsive interaction on the rheology. The mean particle area
fraction is 0.4 and the Couette gap is 18. The superscripts H and P refer to the contributions to
the stress from the hydrodynamic and the repulsive interactions, respectively. Column 3 gives the
net shear stress and column 6 gives the net normal stress.

3.2. Effect of the repulsive force on the rheology

The inter-particle repulsive interaction contributes to the bulk stress in two ways: a
direct contribution, given by (3.4), and an indirect contribution that arises from its
effect on the microstructure. We now consider the net effect of the repulsive force on
the rheology by computing the stress for a range of the parameters F0 and τ which
specify the repulsive interaction (see equation (2.9)).

For a Couette gap of 18 and mean particle area fraction of 0.40, simulations were
performed for F0 and τ varying over three orders of magnitude, the results of which
are tabulated in table 1. The hydrodynamic and inter-particle force contributions to
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the shear and normal stresses are given separately. A feature that is immediately
apparent is that the variation of the net shear and normal stresses over such a large
range of these parameters is quite modest. The hydrodynamic contributions show a
decreasing trend with increasing F0τ (it is this product that determines the repulsive
force, see equation (2.9)). The most notable point here is that the hydrodynamic
contribution to the normal stress increases as the strength of the repulsive force
decreases. From the data in the first four rows of table 1, we observe the rough trend
of a slight rise in the hydrodynamic normal stress as the range of the repulsive force
decreases. These observations contrast with the predictions of Brady & Morris (1997)
that the normal stresses vanish as (b/a − 1)0.22 as b/a → 1, where b is the effective
hard-sphere radius of the particles. We attempted a simulation with no inter-particle
repulsion, but encountered repeated particle overlap even at a time increment of 10−3;
we could not attempt even lower increments as the computation time was excessive.
Therefore, we are unable to comment on whether normal stresses are present when
there is no repulsive interaction between particles at all.

While our observation of a rise in the magnitude of the normal stresses as the
strength or range of the repulsion is reduced is in conflict with the prediction of
Brady & Morris, a suggestion in their paper may explain the trend of our data. Brady
& Morris argue that in the absence of Brownian motion, a weak repulsion between
particles will yield an anisotropy in the pair distribution in a boundary layer whose
thickness is determined by the ratio of repulsive to shear forces, having much the
same consequence on rheology as when there is weak Brownian motion. In other
words, the limit of no repulsion is singular, as is the limit of Pe→ ∞, and there will
be an O(1) contribution to the rheology from the boundary layer whose thickness
scales as the inverse of the range of the repulsive force. Our normal stress data appear
to follow such a trend, and so do our data on the pair distribution (see below).

3.3. Microstructure

For non-Brownian suspensions of rigid spheres in a Newtonian liquid in the creeping
flow regime, non-Newtonian rheology can only arise from anisotropy in the mi-
crostructure. The anisotropy in the pair distribution function of particles has been
determined in experiments by Parsi & Gadala-Maria (1987), in simulations by Bossis
& Brady (1984) and Phung et al. (1996), and from analysis by Brady & Morris (1997).
Here, we report the pair-distribution function inferred from our simulations. Our in-
tention is to explore and emphasize the link between anisotropy in the microstructure
and normal stresses that was made by Brady & Morris (1997).

Owing to the presence of the impenetrable walls, the pair-distribution function
is a function not just of the relative coordinates r and θ, but also of the absolute
coordinate y, i.e. g = g(r, θ, y). Here θ is measured counter-clockwise from the positive
x-axis (see figure 1). The pair distribution was determined in the usual manner, by
choosing a sample particle and counting the number of its neighbours centred within
each discretized area in the (r, θ)-plane; the computed pair probability is then assigned
to the centre of the discretized area. The area discretization was accomplished by
marking concentric circles centred at the sample particle, and lines radiating from it.
The concentric circles were marked with a radius increment of 10−5 for 2 < r < 2.001,
10−3 for 2.001 < r < 2.1, and 10−1 thereafter until r = 4.5; this grid refinement was
necessary to resolve the buildup of particles near contact. The radial lines were marked
to subtend angles in integral multiples of 18◦ with the x-axis. The measurements were
averaged over all particles within a specified range of y, and over a long period of
time.
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Figure 13. The pair-distribution function g(r, θ) at the symmetry axis of the Couette gap. (a)
θ = 9◦, (b) θ = 45◦, (c) θ = 81◦, (d) θ = 153◦: the angle θ is measured counter-clockwise from the
positive x-axis, so 0◦ < θ < 90◦ corresponds to the upstream side (the compression quadrant) of
the reference sphere and 90◦ < θ < 180◦ to the downstream side (extension quadrant). Parameters
are φ̄ = 0.4, H = 18, and F0τ = 10−2 with τ = 100 (solid line) and τ = 1000 (dotted line). Note
the substantial buildup very near contact in the compression quadrant, shown in the inset of each
panel.

Figure 13 shows the radial dependence of the pair distribution for a few angular
positions in the compression quadrant (0◦ < θ < 90◦) and one position in the
extension quadrant (90◦ < θ < 180◦); it decays rapidly from its contact value to
unity as r increases. There is an enormous buildup of the pair distribution very near
contact in the compression quadrant. Comparison of the solid and dashed lines gives
an indication of the effect of the range of the repulsive force (the strength F0τ is
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Figure 14. The angular dependence of the pair-distribution function near contact for various
positions y in the shearing layer. The strong buildup close to contact is not resolved in this plot;
shown is g(r, θ, y) averaged over the range 2 < r < 2.001. Parameters as in figure 13, except that the
symbols are for F0 = 10−5, τ = 1000 in the range y = 9–10.

equal to 0.01 in both cases). The buildup in the compression quadrant is much higher
and nearer contact for τ = 1000; they differ by roughly an order of magnitude at the
compression axis (θ = 45◦).

Figure 14 shows the angular variation of the pair distribution near contact for
various ranges of y. This figure does not resolve the large buildup very near contact
that is evident in figure 13, as g(r, θ) is calculated in a shell of thickness 10−3 around
contact, which yields an average value across the boundary layer. Considerable
enhancement of the pair probability in the compression quadrant is evident, as in
the unbounded shear simulations of Bossis & Brady (1984). That the magnitude of
the distribution for τ = 100 and 1000 are very similar indicates that the net buildup
within the boundary layer for the two cases is roughly the same. This figure suggests
that τ has some effect on the nature of asymmetry as well, as the enhancement in the
pair distribution persists into a good part of the extension quadrant for τ = 1000.

Our simulations do not indicate any substantial dependence of the pair distribution
on the Couette gap H; further, the qualitative trends shown in figures 13 and 14 are
also insensitive to variation in φ̄, though the extent of enhancement in the compression
quadrant increases with φ̄.

It is thus clear that there is significant enhancement of the pair probability in
the compression quadrant. It is this fore–aft asymmetry in the microstructure that
gives rise to the hydrodynamic contribution to the normal stress differences and the
isotropic pressure. While Brady & Morris (1997) have attempted to determine the
contribution to the rheology arising from pair interactions, there is surely a significant
contribution from many-body hydrodynamic interactions; we address this issue in
the concluding section. We have not computed the microstructure for a large enough
range of τ to comment definitively on the prediction of Brady & Morris (1997) that
the enhancement in the pair distribution at contact scales inversely with the range of
the repulsive force, but our limited data appear to follow this prediction. Moreover,



298 A. Singh and P. R. Nott

the integral ∫
0<θ<90

g(r, θ)dr dθ,

which determines the contribution to the stress from the boundary layer, remains
insensitive to the range of the repulsive force, also in agreement with the prediction
of Brady & Morris.

4. Summary and conclusion
We have determined the rheology of a non-Brownian suspension via Stokesian

Dynamics simulations. Our study differs from earlier simulation studies in that we
have considered bounded shear, and determined the stresses from the forces on the
walls, just as one would in an experiment. We have determined the shear and normal
stresses as a function of the mean particle concentration φ̄, the Couette gap H , and
the strength and range of the imposed inter-particle repulsive force.

This study unambiguously demonstrates the existence of an isotropic particle
pressure as well as normal stress differences in sheared suspensions. The normal
stresses are small (in comparison with the shear stress) at low particle concentration
φ̄, but rise rapidly with φ̄ (see figures 8 and 10). They are, however, relatively
insensitive to the Couette gap H . The particle pressure and the first normal stress
difference follow the same trend. The latter is negative (when the stress is defined
in the tensile sense), in agreement with the results of Phung et al. (1996) for large
Péclet number. The ratio of the normal to shear stresses, σyy/σyx, is also a monotonic

increasing function of φ̄, substantiating the analysis of Nott & Brady (1994) that
showed this to be a condition for stability of a homogeneous suspension in uniform
shear.

Normal stress differences from simulations have been reported earlier by Brady &
Bossis (1985) for non-Brownian suspensions and by Phung et al. (1996) for Brownian
suspensions, both of whom considered unbounded plane shear. They were unable to
determine the particle pressure, as the isotropic part of the particle stresslet was taken
to be zero while computing the far-field part of the hydrodynamic interactions. Using
the analytical expressions of Jeffrey et al. (1993) for the hydrodynamic functions that
determine the isotropic particle stresslet, Yurkovetsky (1997) has recently determined
the particle pressure for unbounded shear. As stated above, we have followed the
more direct approach of determining the particle pressure from the normal force on
the bounding walls; our study therefore complements that of Yurkovetsky.

The issue of normal stresses in suspensions merits serious study for two important
reasons. The first is that it is an indication of non-Newtonian behaviour of a mixture
that has for long been thought of as Newtonian – it does not exhibit the more
common non-Newtonian features of shear thinning or thickening. Secondly, a case
has been made for the close linkage of the normal stresses to shear-induced migration
of particles in inhomogeneous shear fields by Nott & Brady (1994) and Morris &
Boulay (1999). The discussion in the introductory section points out the lack of direct
experimental measurements of the normal stresses on well-characterized systems in
the viscous regime, and motivates the necessity for pursuit in this direction.

The pair-distribution function determined from our simulations clearly shows
anisotropy in the microstructure, which is the cause of normal stresses. Brady &
Morris (1997) argued that a balance between a small amount of Brownian diffusion
(i.e. Pe→∞) and advection determines the pair probability; the result is an enhance-
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ment in the pair probability of O(Pe) in a boundary layer of thickness O(Pe−1) in the
compression quadrant. Our simulations are in the precise limit of Pe = ∞, and there-
fore cannot test this prediction. However, we do observe a large buildup of particles
near contact in the compression quadrant. The normal stresses we have determined
show a general trend of increasing as the strength and range of the inter-particle
repulsive force is decreased (see table 1). This contrasts with the prediction of Brady
& Morris that the normal stresses scale as (b/a − 1)0.22 as b/a → 1, where b is the
hard-sphere repulsion radius and a the radius of the spheres. However, their argument
that in the absence of Brownian motion, the balance between a weak repulsion and
advection will still result in an anisotropic microstructure in a thin boundary layer,
and therefore normal stresses, appears to have merit. Our observations of the stress
being insensitive to variation of the strength and range of the repulsive force over a
wide range, and the pair distribution near contact increasing as the range is decreased
lend support to their argument.

In a recent paper, Haan & Steif (1993) have also determined the ‘particle-phase
pressure’ by simulating shear flow of a planar suspension cylinders. While the ob-
jectives of their study and ours are very similar, their simulation technique is very
different: they solve the Navier–Stokes equations in the entire fluid domain, while
the Stokesian Dynamics method enables us to solve for the particle velocities alone
without computing the detailed motion of the fluid. Haan & Steif argue that surface
roughness is key to the development of particle-phase pressure and the anisotropy
in the microstructure, but the manner in which they have numerically accounted
for roughness is in essence similar to imposing a repulsive force between particles.
However, the range of the repulsive force in our simulations is much smaller than the
‘contact threshold’ of Haan & Steif, and is therefore more appropriate for compari-
son with the predictions of Brady & Morris. The results on microstructure that we
present are more detailed and clearly show the singular nature of the enhancement
of the pair probability in the compression quadrants that Brady & Morris predicted.
Lastly, and perhaps most importantly, Haan & Steif calculate the dispersive pressure
as the difference between the isotropic part of the stress in the particle and the fluid
phases. However, the accepted definition of the particle-induced stress is the differ-
ence between the stress in a suspension and that in a pure fluid undergoing the same
macroscopic deformation (see, for example, Batchelor 1970). It is not clear what the
physical relevance of the differential phase pressure reported by Haan & Steif is, but
it is certainly not what one can measure in an experiment. Indeed, the normal stress
on the walls that we measure in our simulations results entirely from the stress in the
fluid adjacent to the wall.

The model of Brady & Morris determines the contribution to the rheology from
pair interactions, arguing that the pair distribution is determined from an interplay
of a weak Brownian motion, repulsive inter-particle force, and hydrodynamic pair
interaction. They show that this produces a large enhancement of the pair distribution
in a thin boundary layer in the compression quadrant, and that this enhancement
leads to a finite contribution to the normal stresses. Our data in figures 13 and 14
clearly corroborate the singular nature of the enhancement that Brady & Morris pre-
dict. However, there is also the distinct possibility of a contribution to the rheology
from asymmetry in the microstructure outside the boundary layer, and not necessarily
arising from pair interactions alone. In this context, we speculate that the anisotropy
in the hydrodynamic (non-Brownian) diffusion that many studies have reported can
perhaps cause an asymmetry in the microstructure, and therefore normal stresses. This
speculation may be explored using the recent phenomenological model of Levine et al.
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(1998), who argue that the appropriate coarse-grained equation for the concentration
fluctuation in a sedimenting suspension is a generalized Langevin equation charac-
terized by a diffusivity and a random current. Using this approach they predict the
existence of ‘screened’ and ‘unscreened’ phases in sedimenting suspensions, referring
to the velocity variance of particles being independent of system size (as observed
in experiments) and varying with the system size, respectively. Their result hinges
on the premise that the diffusivity and the random current are anisotropic, and are
not related by a fluctuation–dissipation theorem. It would be interesting to explore
this model in the context of rheology, as it would complement the effort of Brady &
Morris.

There is an important consequence of the presence of normal stresses that has
not been explored by experiment yet, and that is its effect on traction-free surfaces.
Consider, as an example, shear in a cylindrical Couette device, with the suspension
filled to a certain height in the gap. Within the suspension, normal stresses are
generated due to shear, but the normal traction (in excess of the atmospheric pressure)
on the free surface must be zero. This could result in the concentration of particles
varying, as a function of distance from the surface, in such a way that the normal
stress decays to zero as the free surface is approached. Alternatively, the pressure in
the fluid phase must reduce to compensate the (compressive) normal stress due to the
particles. A proper study of suspension flows with free surfaces is necessary to throw
light on this interesting problem.

The idea of conducting Stokesian Dynamics simulations of bounded shear was
conceived many years ago during discussions with John F. Brady and Jeffrey F.
Morris – we wish to thank them for their suggestions. This project was funded in part
by the Department of Science and Technology under project number III 5(90)/95-ET.
PRN also wishes to acknowledge the facilities provided by the California Institute of
Technology, where he was on sabbatical when this paper was completed.
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